Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.01 vteřin. 
Preparation of plasmonic nanoparticles in non-aqueous environments and in water using chemical way and by laser ablation and their testing
Hochmann, Lukáš ; Šmejkal, Petr (vedoucí práce) ; Procházka, Marek (oponent)
Příprava nanočástic (N) se stala význačnou oblastí chemie díky unikátním vlastnostem, které tyto částice mají a které vedou k širokému okruhu možných aplikací. N se běžně používají v katalýze, elektronice, fotonice a nachází se i v mnoha předmětech běžné denní potřeby. Navíc, vzhledem ke svým plasmonickým vlastnostem, se N ušlechtilých kov· hojně používají ve spektroskopii, kupříkladu při povrchově zesíleném Ramanově rozptylu (SERS). V závislosti na plánovaném použití N lze k jejich přípravě použít více cest. V pří- padě přípravy N v kapalinách (koloid·) lze použít r·zné metody chemické redukce. Tyto metody jsou dobře zavedené postupy, obzvláště ve vodném prostředí. Pro určité aplikace by však byly příhodnější koloidy v jiných rozpouštědlech. Proto je hlavním cílem této práce zhodnotit možnosti přípravy koloid· chemickou redukcí a laserovou ablací ve vodě a organick- ých rozpouštědlech. Dalším cílem je charakterizace připravených částic a zhodnocení jejich potenciálu pro SERS. Zlaté koloidy ve vodě a alkoholech byly připraveny redukcí kyseliny tetracholoro zlatité tetrahydridoboritanem sodným. K přípravě stabilních sol· v alkoholech byl dále nutný pří- davek polyvinylpyrrolidonu (PVP) jako stabilizátoru, protože přímá příprava koloid· chemickou redukcí v alkoholech vedla k jejich kolapsu. Dále...
MOCVD Iron Oxide Nanoparticle Generation not Only for Follow-Up Inalation Exposure Experiments.
Moravec, Pavel ; Schwarz, Jaroslav ; Vodička, Petr ; Kupčík, Jaroslav ; Švehla, Jaroslav
Iron oxide nanoparticles (NPs) are industrially produced and commercially available and they are also frequently emitted into the environment by iron making plants. In the human body, iron is maintained at homeostatic fairly low level. However, freshly generated iron oxide NPs cause febrile and inflammatory response known as metal fume fever, but the potential in vivo consequences of inhalation of iron oxide NPs from the atmosphere has not yet been investigated. An overview of recent studies evaluating iron oxide NPs cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity was presented by Valdiglesias et al. (2015). Toxicity of iron oxide NPs has been studied both in vitro and in vivo. Exposure chamber for the whole body inhalation experiments with small laboratory animals was constructed at the Institute of Analytical Chemistry of the CAS (Večeřa et al., 2011) and some methods of NPs generation for these experiments were already tested in our laboratory (Moravec et al., 2015. Moravec et al., 2016). In this study we tested a method of long lasting generation of iron oxide NPs by pyrolysis and oxidation of ironIII acetylacetonate (FeAA3).
Plný tet: SKMBT_C22018110212483 - Stáhnout plný textPDF
Plný text: content.csg - Stáhnout plný textPDF
Nanoparticle Generation for Follow-Up Exposure Studies by Oxidation of Copper Acetylacetonate.
Moravec, Pavel ; Schwarz, Jaroslav ; Vodička, Petr ; Švehla, Jaroslav ; Kupčík, Jaroslav
The exposure to nanoparticles (NPs) represents a severe problem to human health, because they are becoming more widely used and their number of applications continually increases. Particles containing copper are emitted from smelters, iron foundries, power stations and municipal incinerators (WHO, 1998), as well as from brake linings during braking, Kukutschova et al. (2011). Copper and copper oxide NPs are frequently used as catalysts, heat transfer fluids in machine tools (Kim et al., 2011), inks, anode material in lithium-ion batteries (Guo et al., 2002) and many others. Even though CuO NPs were found highly toxic, Karlsson et al. (2008) and it is likely that NPs enter human body via respiratory tract, the inhalation exposure experiments of CuO NPs with laboratory animals are still rather rare (Pettibone et al., 2008 and Lebedova et al., 2016). The exposure chamber for long lasting inhalation experiments was constructed at the Institute of Analytical Chemistry of the CAS (Večeřa et al., 2011) and some methods of NPs generation for these experiments were already tested in our laboratory (Moravec et al., 2015 and Moravec et al., 2016a). The generation of Cu/Cu2O NPs by thermal decomposition of copper acetylacetonate (CuAA) was reported by Moravec et al. (2016b) and here we present the results of long lasting generation of NPs by oxidation of CuAA.
Plný tet: SKMBT_C22017103113062 - Stáhnout plný textPDF
Plný text: content.csg - Stáhnout plný textPDF
Preparation of plasmonic nanoparticles in non-aqueous environments and in water using chemical way and by laser ablation and their testing
Hochmann, Lukáš ; Šmejkal, Petr (vedoucí práce) ; Procházka, Marek (oponent)
Příprava nanočástic (N) se stala význačnou oblastí chemie díky unikátním vlastnostem, které tyto částice mají a které vedou k širokému okruhu možných aplikací. N se běžně používají v katalýze, elektronice, fotonice a nachází se i v mnoha předmětech běžné denní potřeby. Navíc, vzhledem ke svým plasmonickým vlastnostem, se N ušlechtilých kov· hojně používají ve spektroskopii, kupříkladu při povrchově zesíleném Ramanově rozptylu (SERS). V závislosti na plánovaném použití N lze k jejich přípravě použít více cest. V pří- padě přípravy N v kapalinách (koloid·) lze použít r·zné metody chemické redukce. Tyto metody jsou dobře zavedené postupy, obzvláště ve vodném prostředí. Pro určité aplikace by však byly příhodnější koloidy v jiných rozpouštědlech. Proto je hlavním cílem této práce zhodnotit možnosti přípravy koloid· chemickou redukcí a laserovou ablací ve vodě a organick- ých rozpouštědlech. Dalším cílem je charakterizace připravených částic a zhodnocení jejich potenciálu pro SERS. Zlaté koloidy ve vodě a alkoholech byly připraveny redukcí kyseliny tetracholoro zlatité tetrahydridoboritanem sodným. K přípravě stabilních sol· v alkoholech byl dále nutný pří- davek polyvinylpyrrolidonu (PVP) jako stabilizátoru, protože přímá příprava koloid· chemickou redukcí v alkoholech vedla k jejich kolapsu. Dále...
Procesy vzniku nanočástic v proudu nízkoteplotního plazmatu
Brožek, V. ; Mastný, L. ; Moravec, Pavel ; Neufuss, Karel ; Ondráček, Jakub ; Ždímal, Vladimír
V příspěvku je popsán vznik nanoprášků oxidů titanu, oxidů chromu a elementárního stříbra interakcí titanových, chromitých a stříbrných prekurzorů v proudu kyslíko-vodíkového plazmatu při teplotách nad 25000 K. Produkty velikosti 25 – 300 nm jsou zachycovány na kovových terčích a ve vodních filtrech a separovány v ultra-odstředivkách. Pro detailní studium rozdělení velikosti aerosolových nanočástic byl v této práci nasazen nejmodernější aerosolový spektrometr SMPS 3936, pracující v rozsahu velikostí 14 - 700 nm. Abychom pokryli co nejširší rozsah velikostí, byl tento spektrometr doplněn o Aerodynamický třídič částic APS 3321, pracující ve velikostním rozmezí 500 – 20000 nm. Oba spektrometry vzorkovaly aerosol paralelně s časovým rozlišením 3 minuty. V práci jsou diskutovány procesní podmínky produkce anorganických nanočástic definovaného složení pomocí plazmových generátorů.
Plný text: Stáhnout plný textPDF

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.